百益文库网为您提供优质参考范文! 工作汇报 共同富裕 思想汇报 事迹材料 党课下载 不忘初心
当前位置:首页 > 专题范文 > 公文范文 >

高中数学重点知识6篇(范文推荐)

时间:2023-07-29 16:00:15 来源:网友投稿

高中数学重点知识第1篇终边与终边相同(的终边在终边所在射线上).终边与终边共线(的终边在终边所在直线上).终边与终边关于轴对称.终边与终边关于轴对称.终边与终边关于原点对称.一般地:终边与终边关于角的下面是小编为大家整理的高中数学重点知识6篇,供大家参考。

高中数学重点知识6篇

高中数学重点知识 第1篇

终边与 终边相同( 的终边在 终边所在射线上) .

终边与 终边共线( 的终边在 终边所在直线上) .

终边与 终边关于 轴对称 .

终边与 终边关于 轴对称 .

终边与 终边关于原点对称 .

一般地:
终边与 终边关于角 的终边对称 .

与 的终边关系由“两等分各象限、一二三四”确定.

弧长公式:
,扇形面积公式:
,1弧度(1rad) .

三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意:

三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .

三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

三角函数诱导公式的本质是:奇变偶不变,符号看象限.

三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).

辅助角公式中辅助角的确定:
(其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .

三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

三角形中的三角函数:

(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.

(2)正弦定理:
(R为三角形外接圆的半径).

注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.

(3)余弦定理:
等,常选用余弦定理鉴定三角形的类型.

(4)面积公式:
.

高中数学重点知识 第2篇

集合的元素具有确定性、无序性和互异性.

对集合 , 时,必须注意到“极端”情况:
或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.

对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为

“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.

判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .

充要条件

高中数学重点知识 第3篇

向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

几个概念:零向量、单位向量(与 共线的单位向量是 ,特别:
)、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).

两非零向量平行(共线)的充要条件

.

两个非零向量垂直的充要条件

.

特别:零向量和任何向量共线. 是向量平行的充分不必要条件!

平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+

三点 共线 共线;

向量 中三终点 共线 存在实数 使得:
且 .

向量的数量积:
, ,

.

注意:
为锐角 且 不同向;

为直角 且 ;

为钝角 且 不反向;

是 为钝角的必要非充分条件.

向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).

注意:
同向或有 ;

反向或有 ;

不共线 .(这些和实数集中类似)

中点坐标公式 , 为 的中点.

中, 过 边中点; ;

. 为 的重心;

特别 为 的重心.

为 的垂心;

所在直线过 的内心(是 的角平分线所在直线);

的内心.

.

高中数学重点知识 第4篇

圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于③圆锥曲线的焦半径公式如下图:

圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

注意:等轴双曲线的意义和性质.

在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

( , , )或“小小直角三角形”.

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

高中数学重点知识 第5篇

直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .

注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)

与直线 平行的直线可表示为 ;

与直线 垂直的直线可表示为 ;

过点 与直线 平行的直线可表示为:

;

过点 与直线 垂直的直线可表示为:

.

(2)直线在坐标轴上的截距可正、可负、也可为直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .

注:点到直线的距离公式

.

特别:
;

;

.

线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

圆的方程:最简方程 ;标准方程 ;

一般式方程 ;

参数方程 为参数);

直径式方程 .

注意:

(1)在圆的一般式方程中,圆心坐标和半径分别是 .

(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:

, ,

.

解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程是:

过圆 上一点 圆的切线方程是:

过圆 上一点 圆的切线方程是:
.

如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).

曲线 与 的交点坐标 方程组 的解;

过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.

高中数学重点知识 第6篇

指数式、对数式,

(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.

(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:
.

(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.

(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数 与函数 的图像关于直线 ( 轴)对称.

推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.

推广二:函数 , 的图像关于直线 (由 确定)对称.

(2)函数 与函数 的图像关于直线 ( 轴)对称.

(3)函数 与函数 的图像关于坐标原点中心对称.

推广:曲线 关于直线 的对称曲线是 ;

曲线 关于直线 的对称曲线是 .

(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .

如果 是R上的周期函数,且一个周期为 ,那么 .

特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .

推荐访问:高中数学 重点 知识 高中数学重点知识6篇 高中数学重点知识(汇总6篇) 高中数学重点知识归纳